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ABSTRACT 

In th is  paper  we es tab l i sh  d imens ion  free LP(• n, [xp) n o r m  inequal i t ies  

(1 < p < cx~) for t h e  oscil lat ion and  var ia t ion  of the  Riesz t r a n s f o r m s  

in ~ n  In doing so we find Ap-weighted n o r m  inequal i t ies  for the  oscil- 

la t ion and  the  var ia t ion of the  Hilber t  t r a n s fo rm  in l~. Some weighted 

t ransference  resu l t s  are also proved. 

In troduct ion  

Throughout  (X, 5 r ,  #) will denote an arbitrary a-finite measure space. Let {Tr} 
be a family of operators bounded from LP(X, 5 r,  #) into itself for some p in 

the range 1 < p < c~ and such that  the limit T f  = limr~0 Trf ,  for functions 

f E LP(X, J:,#), exists in some sense. A classical method of measuring the 

speed of convergence of the family {Tr} is to consider "square functions" of the 

o~ T ~12~1/2 where ri "~ 0. In the last decade and mainly type (Ei=I ITr, f - ~+lJ, J 
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in the context of ergodic theory (see [JKRW] and the references there), other 

expressions have been considered to measure the speed of convergence. 

Let T be an operator such that  T = lim~-.~0 Tr as above for a family of 

operators {T~}~>0. Given {ti}i a fixed decreasing sequence ti >_ ti+~ "~ 0 we 

define the osc i l la t ion  o p e r a t o r  as 

O(Tf)(x) = sup 
\ i = l  ti+l<_ei+l<ei<_tl 

We shall also consider the operator 

O ' ( T f ) ( x ) = ( ~ =  

It is easy to see that  

[Te,+lf(x) _ T~,f(x)12) 1/2 

(0.1) O'(Tf) ~ O(Tf). 

We shall also consider the p -va r i a t i on  o p e r a t o r  

vp(ry)(x) = s u p  IT~,+ay(x) - T~,f(x)l p 
s~ "~O _ 

where the sup is taken over all sequences of real numbers {ei} decreasing to 

zero. 

In this paper we study the oscillation and variation of the Riesz transforms 

Rj = (Oxj (--A) 1/2 in IR n. We shall prove the following result. 

THEOREM A: Given p in the range 1 < p < oc, - 1  < a < p - 1, and p > 2, 

there exist constants Ca, C~,p independent of n such that 

IlO(Rjf)llL"(~",lxl"dx) ~ C~llfllL"(R",lxl"d~), J = 1 , . . . ,n  

and 

Ilvp(RjI)IIL'(R~,I~I"d~) ~ C.,pllfllc"(~n,l~l"d~), 

Consider the family of operators 

Hrf(x) = f _ _ 1  f(y)dy 
J( Ix-yl>r} x - y 

in LP(I~, dx). The following result is proved in [CJRW]. 

j = l , . . . ,n .  

sup ITti+af(x) _ Ts, f(x)]2) 1/2 
ti+l <Si~_ti 
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THEOREM 0.2: Given p in the range 1 < p < ~ then 

(0.3) ]IO(H f)IIL~(R) <_ CpllfllL~(~), and IIVv(Hf)[IL,(R ) < Cp{IfllL~(r~),P > 2. 

On the other hand, dimension free results for operators acting on LP(~ n, dx) 
can be found in [$3], [AC], [P], [DR], [R]. 

We need three steps in order to get Theorem A. The steps, that coincide with 

the sections of the paper, are as follows. 

In section 1, by using (0.3) and a geometrical argument, we prove a point- 

wise estimate for the sharp maximal functions of the oscillation and variation 

of the Hilbert transform; see Lemma 1.4. This pointwise estimate, together 

with some vector-valued Calder6n-Zygmund theory, allows us to prove that 

these particular oscillations and variations are bounded from LP(I~, v(x)dx) into 

LP(I~, v(x)dx) for p in the range 1 < p < ~ and v any weight in the Mucken- 

houpt [Mu] class AB (see Theorem 1.5). We believe this result is of independent 

interest. This method of proof follows closely some of the ideas in [RRT]. That 

is, describe a (possible sublinear) operator, for which a boundedness property 

is known, through a linear operator valued in a certain Banach space with an 

associated kernel. The study of the smoothness of the kernel (rather non-trivial 

in the present case) gives us a pointwise estimate of the sharp maximal function; 

see inequality (1.3). No information about Al-boundedness is obtained in this 

way; see [RRT] for more examples of this type. 

In section 2 we prove a weighted transference result for positive operators 

induced by flows on LP; see Theorem 2.12 and Remark 2.13. The results are 

good enough for our purposes, but it is worth mentioning that they can also 

be proved in the case of strongly continuous one-parameter group of positive 

invertible linear operators on LP(X, F', #). The interested reader can fill in the 

details; see [GT] and [MT] for some related results. 

The following comment should be made before describing the content of sec- 

tion 3. Assume that we have a family of operators {St} that are bounded from 

L~I (p) into L~2 (p), where 1 < p < ~ and B1, B2 are Banach spaces, and that 

the limit Sf(x) = limr-~0 Srf(x) exists in some sense. The definition of the 

oscillation and variation operators can be generalized in the obvious way, that 

is for example 

(o .4 )  
(oo ) 1/2 

o ( s / )  = s u p  IIs ,,l/(x) - 
i=1 ti+a~ei+a<ei~_t~ 

An analogous definition can be given for the variation operator. 
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Denote by 7~ the g2 ({1,. . . ,  n})-valued operator given by 

7"~f(x) = ( R l f ( x ) , . . . , R n f ( X ) ) ,  Rj  = O x j ( - A )  1/2. 

It is known that  

where 

T~f(x) - lira (ReA f ( x ) , . . . ,  Re,nf(x)) ,  
e"~O 

f~ (xj - ~j) R~,j f (x)  = Cn -ul>e I x -- Yl n+l f (y )dy ,  

with Cn a specific constant (see (3.1)). Therefore 

O(7~f)(x) 
( ~ )1/2 

= ~ sup II~ ,+, f (x)-~ , / (x) l l~(~l  . . . . .  ~ } )  

i=1 ti'~l ~Ei'l-l <Ei~ti 

= ~ sup ~IR~,+,,j(x)-n~,,~y(x)I ~ 1 / ~  
1/2 

i=1 ti+l<_~i+l<ei<t~ j = l  

\ i 1 t i + a < ~ i + a < , i < t i  J ~ i + a < l x - y l < E i  I x - -  y[~-+-2 = - - j = l  

Analogous formulas can be obtained for the variation. By using the transference 

result in section 2 and the weighted norm inequalities in section 1 we prove the 

following Theorem, which is the main result in section 3 and the motivation of 

the paper. 

THEOREM B: Given p in the range 1 < p < cxD,, a with - 1  < a < p - 1, and 

p > 2, there exist constants Ca, Ca,p independent of  n, such that 

and 

IlV;(nf)HL;(Rn,lxl°d~) <_ C,~,pllYlILP(R",IxI°d~). 
Since O ( R j f ) ( x )  < O(Tt f ) (x )  and Y p ( R j f ) ( x )  <_ lza(7~f)(x ) for j = 1 , . . .  ,n  

and f E LP(• n), Theorem B contains Theorem A. 
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1. One-dimensional  results 

We shall denote by E the mixed norm Banach space of two variable functions 

h defined on R × N such that 

(1.1) IlhllE = (suplh(s,i)l) 2 < ~ .  

Given a fixed decreasing sequence t~ > ti+l "~ O, let Ji = (ti+l, t~] and define the 

operator U(T): f --~ u ( r ) f ,  where U(T)f(x)  is the E-valued function given 

by 

U(T)f(x)  = {Tt,+l f (x)  - T~f(x)}s~j,,ieN. 

Here the expression {Tt,+l f(x)  - Tsf(X) }seJ,,ieN is a convenient abbreviation 

for the element of E given by 

( s , i )  - TJ(x))Xj,(s), 

and {Tr}r>0 is a family of operators defined on LP(II~) for some p. Then 

O' (T f)(x) -- II{Tti+~ f (x) - Ts f  (X) }seJ,,ieNI]E -= IIU (T) f (x)tlE. 

Therefore we will have inequalities of the type HO'(Tf)IILp <_ CHftlLp if and 

only if the operator U(T) defined above maps L p boundedly into L~. 

Let O = {/~ :/~ = {ei},ci E ll~, si ~ 0}. We consider the set N× O and denote 

by Fp the mixed norm space of two variables functions g(i, fl) such that 

"g"Fp -- sup ( E 'g(i,/~)'P) I/P < oo. 

We also consider the Fp-valued operator V(T): f ) V ( T ) f  on LP(~) given by 

(1.2) V(T) f (x )  = {T~,+~ f (x)  - T~, f(x)}~eo,~={~,}- 

Here the expression {T~+~ f (x) - T~ f (x) }Zeo,~={e,} is an abbreviation for the 

element of Fp given by 

= (i, {ok})  - 

As in the case of the oscillation operator it is clear that 

Yp(Tf) = HV(T)fHF~, 

and therefore we will have inequalities of the type II])p(Tf)]lL~ < CI]flIL,, if and 

only if the operator V(T) defined in (1.2) maps L p boundedly into L P .  
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By the comments above inequality (0.3) is equivalent to saying that for p in 

the range 1 < p < cc the operators 

U(H)f(x)  = {Ht,+~f(x) - Hsf(x)}~eJ~,ieN 

: { f{ti÷l<[x_yl<8} 1 f (y)dy}s x - y EJ~,iEN 

map LP(~) into LP(I~), and the operator 

V(H)f (x)  = {ge,+~f(x) - He, f(x)}~eo,2={e,} 

~+l<[z-yl<~,} x y ~eo,~={~} 

maps LP(~) into L~p(~). 

Our aim is to prove that U(H) maps LP(v) into LPE(v) and that V(H) maps 

LP(v) into L~, (v), for p in the range 1 < p < ec and v a weight in the Ap 
class of Muckenhoupt. It is well known (see [RRT]) that in order to prove such 

weighted inequalities it is enough to prove that for every r > 1 there exists a 

constant Cr such that 

(1.3) (U(H)f)~(x) <_ CrMrf(x),  (V(H)f)I(x)  <_ CrMrf(x).  

Recall that, if B is a Banach space and ~ is a B-valued function, 

~ ( x ) = s u p  1 ~ l ~ x~, ~ H~(Y) - ~ ~(z)dzllBdy and 

M ~ ( x )  = ( snplxe, ~ ~N~(Y)HBdY) 1/r" 

It is also well known (see [RRT]) that, in order to prove pointwise inequalities 

such as (1.3), it is enough to prove the following lemma. 

LEMMA 1.4: For each r > 1 and p > 2 there exist constants C~, Cr,p such that, 
for every interval I = (xo - l, Xo + l), the following inequalities are true: 

i l l  I ii-~[ IIU(H)I(x) - U(H)(fx4I¢)(Xo)I]Edx <_ CrM~I(xo) and 

if ii-~] I[V(H)f(x) - V(H)(fX4~c)(xo)llFodx ~_ Cr,pMrf(xo), 

where 4I c denotes the complementary set of the interval 41 = (xo - 4l, Xo + 4/). 

Proof'. We shall only prove the inequality for the operator U(H); a similar 

proof can be given for the operator V(H). 
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Fix f and an interval I = (Xo - l,xo + l). Define fl(Y) = f(Y)X4I(Y) and 

f2(Y) = f(Y) - fl(Y). Since the operator U(H) is linear, by using HSlder's 

inequality and (0.3), we have 

1 
II--T fz [[U(H)f(x) - U(H)(fx4,~)(Xo)[[Edx 

= [I-~ IIV(H)(fl)(x) + U(H)(f2)(x) - U(H)(f2)(xo)IIEdX 

< 1 1/r 
--(~[ fI Hv(g)(fx)(X)l[rEdx) 

(~I[ f1 [[U(H)(f2)(x) - U(H)(f2)(Xo)l[Edx) 

(~I[ f I[U(H)(f2)(x) - U(H)(f2)(Xo)l]Edx) 

<_CrMrf(Xo) + (~ii f [[U(H)(f2)(x)-U(H)(f2)(Xo)[]Edx). 

Now we shall dominate the second summand. Let x 6 I; we have 

I I U ( H ) ( f 2 ) ( x )  - U ( H ) ( f 2 ) ( x o ) [ I E  

- f{ l f(Y)X4I¢(y)dy~ 
t~+l<[xo--y[<s} X0 -- Y ) s6J~ , i6Nl lE  

< 
t~+l<]x-y]<s} X -- y Xo - y Js6&,ieN E 

c 

0 -- Y )s6J~,i6NHE 

=Aa + A2. 

S i n c e  N{X{ti+x<[x--y[<s}}sEJ,,iENI]E ~ 1, by using Minkowsky's inequality we 
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have 

A~ < 

< 

< 

jfRil{X{t,+l<lx_ul<s)}seJ~,iCNii E 1 1 If(y)lx4Ic(y)dy 
x - y Xo - y  

C£ Ix- xo[ ly-- If(y)ix4 -(y)dy 

<_ C , x -  xo, 
k:O 2k41<lXO--yi<2k+141} lY= ~0~ 2 If(Y)ldY 

<_ C ~ If(y)ldy 
k=0 [x°--Yl<2k+141} 

<_ CM f(xo), 

where M f  is the  H a r d y - L i t t l e w o o d  max ima l  funct ion of f .  

Now we shall deal wi th  A2. The  integral  

will only be  non-zero if ei ther  X(t ,+l<iz-yl<s} = 1 and X{t,+l<lxo-~l<s} = 0 or 

viceversa.  T h a t  means  the  integral  will only be  non-zero in the  following cases: 

(i) t i+l  < I x -  y[ < s and [Xo - y[ < t i+l ,  

(ii) t i+l  < I x -  y[ < s and  IXo - y[ > s, 

(iii) t i+l  < Ixo - Yl < s and  I x -  Yl < t i+ l ,  

(iv) t~+l < IXo - Yt < s and I x -  Yl > s. 

In the  first case we observe tha t ,  as Ix-xo[ < l, we have ti+l < [x-yl <_ ]X-Xol+ 
[xo-yl < l+ti+l. Analogously,  in the th i rd  case we have ti+l < lxo-yl < I+ti+l. 
In the  second case we have s < i x 0 - y l  <- [Xo-X]+[x-Yl < l+s and analogously  

in the  four th  we have s < Ix - Yl < l + s. Therefore  we have 

£lX{ti+l<[X--y]<s}- )~{ti÷l<[xo-y[(s)l~lf(Y)lX4I:(y)dy 

X{t~+t<lx-yl<t.+~+l})~{t~+~<lx-yl<s} ~ l f ( Y ) l ~ 4 r ~ ( y ) d y  

£ X{s<lxo-yl<s÷l}X{ti+,<lx-yl<s}-------51 + ix ° _ y lf(Y)]X4I~(y)dy 

"~- £ X{ti+l<tX°-Y[<ti+l+l}X{ti+'<]x°-y'<s} ~If(Y)IX4I~(y)dy 

X{s<lx-yl<s+O X{t~+x<l~:o-yl<s} ix ° _ Yl If(y)lx4~o(y)dy 
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1 If(y)lrX41~ (y)dy) ~/~l 1/~' 

+ C X{t,+,<]xo_y]<S} lXo yl~ lf(y)rX4lc(y)dy 11/r' , 

where  in the  las t  inequa l i ty  we have used H51der's i nequa l i ty  wi th  r in the  range  

1 < r < oo. R e t u r n i n g  to  our  e s t ima t i on  of  A2, we have 

A2 = { ~ I,X'{ti+,<,x--y,<s} - ~{ti+,<,xo--y,<s}l 

1 Lf(yl l~ . (~ldy / 
x Ixo - ~------[ ~ J , , ~ N , , ~  

~Cll/r' { ( fR.X{t~+,<,x-y,<S}[x 0 l y[r'f(Y)]rx41c(y)dy) I/r}sEJ,,ieN E 
I i f (y) i rx4z~(yldy), /~},ej , ,~er~l l  E + Cl 1/~'11{( ~ { t , + , < l , o - ~ l < s }  Ix0 - yl ~ 

=A21 + Ae2. 
Choos ing  1 < r < 2 we have 

t{ ( ~ X{t~+l<,x-y,<S},xo 1- y.r'f(Y)'rx4Ic(y)dy) l/r}seJ~.iENt E 

seJ, ]Xo y]r 

<--(~  (~({ti+l<'X--y'<tl}iXo 1 y,r'f(Y)'r~4Ic(y)dy)2/r) 1/2 

1 (y)dy) 1/r < ( ~ ~ X{t,+l<'~-y'<t~} ,xo _ y,r ' f(y)'~X4'c 

: ~ ( { t ,+ l<lx - -y]<t i }  ix ° yl~lf(y)rx4r¢(y)dy 

1 <-( ~ ,xo- y,r'f(Y)'rX4Ic(y)dy) 1/r 

<-( ~ f l y[r'f(Y)'rdY) l/r 
k_~O J Jt2e41<]xo-yl<2~+141} IXo - 

1/r 
<- (2k4/) ~ If(Y)]rdY/ 

k - - - - O  Im°--Yl<2k+14/} 
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(k~O 1 r ) 1/r _<Or -= (2k4~-)r_ iM(f) (x0)  

<or ( M ( :  r) (xo))l/r1-1/~' . 

Therefore we get A21 _< Cr(M(ff)(Xo)) 1/r. Analogously we get 

A22 <_ Cr(M(fr)(xo)) 1/r 

and this is the end of the proof of the Lemma. | 

As remarked earlier, the preceding lemma gives the inequality (1.3) and there- 

fore as a consequence we have the following Theorem. 

THEOREM 1.5: The operators O(H) and Vp(H), p > 2 map LP(~, v) boundedly 
into itself for 1 < p < oc and v a weight in the Ap class of Muckenhoupt. 

2. W e i g h t e d  t r a n s f e r e n c e  

Given a a-finite measure space (X, 5 r, #), an endomorphism of the a-algebra 5 r 

modulo null sets is a set function (I): 5 r -+ ~" which satisfies 

(i) ~([.J. En) = Un ~(E~), for disjoint E~ • ~', n = 1, 2 , . . . ;  

(ii) ~ ( X  \ E) = ~ (X)  \ ¢ (E) ,  for all E • 9v; 
(iii) given E • J ' ,  with #(E)  -- 0, then #((I)E) -- 0. 

In these circumstances, (b induces a unique positive and multiplicative 

linear operator, also denoted by (I), on the space of (finite-valued or extended) 

measurable functions such that 

(2.1) ~(fn) -+ (I)(f)#-a.e. whenever 0 < fn ~ f,  #-a.e. 

The action of • on simple functions is given by 

c xE,)(x) = c, c. 
i i 

Given a Banach space B, ¢ has an extension to the simple B-valued functions, 

also denoted by (I), given by 

¢ ( E x s ,  bi) = EX,~(E,)bi (bi • B, Ei • jz). 
i i 

It is clear that,  for f:  X --~ B a simple function, 

(2.2) ll~(f)(x)lls = ~(llfHB)(x) (x ~ x). 
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In other words, if ~ induces an operator T bounded in LP(#), then T has a 

bounded extension, also denoted by T, from L~(#) into L~(#) for any Banach 

space B. The action of T on LP(#) ® B is defined as 

The norm of T on LP(#) equals the norm of T on LP(#). 

STANDING HYPOTHESES 2.4: Throughout, we take (X,5 r ,#)  to be a a-finite 

measure space and T = {T t : t E ]~} a strongly continuous one-parameter group 

of positive invertible linear operators on L p = LP(X, :7 7, #), for some fixed p in 

the range ] < p < oc, such that for each t E ~, there exists a a-endomorphism, 

~t, with Tt f = ~t f . In this case we shall say that T satisfies Slip. 

From the group structure of T, it follows that for each t E /1~, there exists a 

positive function Jt such that 

(2.5) : and fx  : fx id , • 

Using the properties of Bochner integration we have 

(2.6) T t ( ~ T ~ f d s ) =  ~ T t ( T ~ f ) d s ,  t • ~  

for all f • LP(#) and all compact subsets K of 1~. 

Definition 2.7: Let (X, ~,  #), T and fixed p in the range 1 < p < c~ be as in the 

SHp 2.4, and let w be a measurable function on X such that w(x) > 0, p-almost 

everywhere. We shall say that w is an Ergodic  Ap-weight with respect to the 

group T if, for #-almost all x • X, the function t --+ Jt(x)Ot(w)(x) is an Ap 
weight with an Ap-constant independent of x, where Jt and Ot are as in (2.5). 

We shall denote by Ep(T) the class of ergodic Ap-weights associated with the 

group T. Given a weight w and a family T satisfying Slip 2.4, we shall use the 

following notation: 

(2 .8 )  ( t )  = 

Definition 2.9: Any x-independent Ap-constant for the family of weights {Twx } 

will be referred to as an Ep (T)-constant for w. 

In [GT] we develop a weighted ergodic theory; one of the results obtained 

there is the following. 
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THEOREM 2.10: Let T be a family of operators satisfying Slip 2.4 for every 
p in the range 1 < p < c~. Assume that K is a sublinear operator such that 
[IK f[[m,o(~d,) <_ C~[[f[[L;o(wdu) for every w 6 Epo(T), where Po is fixed in the 
range 1 < p < c~ and the constant C~ only depends on an Epo ( T)-constant for 

w. Then K is bounded from LP(wdp) into LP(wd#) for every p, 1 < p < 0% and 
every  e 

Definition 2.11: Given Banach spaces B1, B2, and a function 

k 6 L~oc,L(B,,B2)(R), 

we shall say that  k is a "bounded oscillation kernel" if there exists an operator 

K with the following properties. 

(i) K maps L~I (II< v) into L~2 (R, v), for every v 6 Ap. 
(ii) If ~ 6 L °¢ (R) and has compact support, then B1 

K~(t) = £ k(t - s)~(s)ds, t ¢ support of 

(iii) Given {ti}i any deceasing sequence ti _> t/+l "~ 0, the oscillation operator 

O(K~D)(x) = sup 
__ t i + l ~ - - ~ i + l < E i ~  t i  

is bounded from L~I(R,v ) into LP(R,v), for all p in the range 1 < p < c~ 

and each v e Ap, where 

f{ k ( t -  s)~(s)ds, O < ¢ < s'. K~,~,~(t) = 8:~<lt-sl<~'} 

Moreover, the operator norm depends only on any Ap constant of v. 

Now we state the main theorem in this section. Recall that  T t has a natural 

extension to LP 1 (X, d#), also denoted by T t (see (2.3)). 

THEOREM 2.12: Let p be in the range 1 < p < oo and let T be a family of 
operators satisfying Slip 2.4. Let B1,132 be Banach spaces and k a "bounded 
oscillation kernel" as in Definition 2.11. Given a decreasing sequence ti >_ ti+l "~ 

,,~L,Ji 
O, we consider finite sets L C N and ~ C (ti+l, ti]. We define the operator v K 

on (X, by 

( ~ L  f{ k(s)T-Sf(x)ds ~2 )1/2 oL'J ' f (x)  = max 
• e~ , e i+16J i  e ,+ ,<[s[<e~}  
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Then 

sup I}oL'J'flIL~(X,oj) < Np(O(K),Tw)tlfllL~(x,,.), 
{ L,Ji : L,Ji finite } 

for every w E Ep(T). Here Np(O(K), Tw) denotes an essential bound relative 
to x of the operator-norm of O(K) as a bounded operator from LP 1 (II~, Twx) 
into LP(~, "-]-wx), where Twz(t) is defined in (2.8). 

We observe that as w E Ep(T) then Twx(.) E A; with an Ap constant 

independent of x, so that such essential bounds exist. 

Proof." Given f E L~I (X, #), define 

f{ k(s)T-Sfds" K~,~,f = ~<l~l<~') 

Observe that since k is integrable on {¢ < [t] < ¢'} and t ~ T t f  is strongly 

continuous, the operator h~,E, is well defined for f E LP(d#) via Bochner in- 

tegration. Then, given a decreasing sequence ti _> ti+l ~ O, and finite subsets 

L C 1%1 and ~7i C (ti+l, ti] we have to show that 

x lI{ K~,+~,~,f (xl }ieL,~,+~ <~,c~ IlPEW(X)dp(x) 

< gp(O(K),Tw)/)I[f(x)IIPw(x)d#(x),  

where E is the Banach space defined in (1.1). By using identities (2.5) and (2.2) 
we have 

x [i{ K~,+~,6, f (x) }IfEw(x)d#(x) 

= ./• Jt (z) Ct ([[ {ge ,+ l  ,e, f (x )}  lIE) p (x)¢ t (~)(x)d~t(x) 

= f Jt (z)[I {¢t (Ke,+~,e, f)(x)}H p c t  (w)(x)d#(x). 
J x  

Let H C ]I~ be a compact set such that 

H D {t :Ci+l <: Jtl < ci, for some i E L and some Ei,Ei+ 1 E Ji}. 

Let 5 > 0 and choose a relatively compact open set V C ~ such that 

I V -  HI~IV I < 1+ ~, 
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where JHJ is Lebesgue measure of H and V - H = {t - s : t E V,s E H}.  

Averaging over V, using Fubini's Theorem, the properties of the family T, the 

fact that g0(K) is bounded in LP(]~, v) for v E Ap and the definition of Ep(T) 
weights, we have 

fxll{h'~,+l f(x)}ll~(x)d~(x) 

1 

: fx 
1 : j ~/~ Ll~.'(..,.,,.i~)(x)~ll:.~(x).'(.)(x),,..(xl 

x Jt(x)~t(w)(x)dtd#(x) 

,,.._. 

:..(o(.,. ..,.,.,:d', /. ,,(x,,,: .(x)..(x, 

Tw) ' (1  + 5 ) J x  <_Np( go( K), [[f(x)ll~ w(x)d~(x). 

Now let 5 ~ 0 to obtain the required result, i 

Remark 2.13: One can define analogously the concept of "bounded p-variation 

kernel" by changing (iii) in Definition 2.11 to 

(iii)' The p-variation operator 

V . ( K ~ ) ( x )  = sup i i g ~ . ~ . + , ~ ( x ) l i ~ .  , 
{~J) i=1 

where the supremum is taken over all decreasing sequences {¢i} with 

limci = 0, is bounded from LPl(I~,v ) into LP(~v), for all p in the range 
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1 < p < oo and each v E Ap. Moreover, the operator norm depends only 

on any Ap constant of v. 

Then the following result, analogous to Theorem 2.12, can be proved. 

Let 1 < p < oc and let 7- be a family of operators satisfying Slip 2.4. Let 

B1,B2, be Banach spaces and k a "bounded p-variation kernel", with p > 2. 

Let £ be a finite set of decreasing sequences {~} with limci = 0. We define the 

operator lZfd ,- on L P  (X, #) by 

lJ~.f(x) = max ( / {  k(s)T-Sf(x)dsl'P\l/P) 
{eiIe£ e,+1<lsl<ei} B2/  

Then 

c Np(I;p(K),ToJ)ILflIL~(x,~), sup IIV~,KflIL~(X,~) 
{ £ : £ f i n i t e }  

for every w 6 Ep(T). Here Np02p(K), Tw) denotes an essential bound relative 

to x of the operator-norm of )2p(K) as a bounded operator from L~, (~, Twx) 
into LP(~, Two), where Two(t) is defined in (2.8). 

3. Appl ica t ions  to d imension free e s t ima tes  

The operators Rj = cOxj ( -A) -½ are defined, for functions whose Fourier trans- 

forms have compact support, by the formula 

(0xj ( - A ) -  ½ fy(~) = 27ri(d I~1-1 ] ( ~ ) ;  

see IS1]. Since A is the infinitesimal generator of the Gauss semigroup, the 

operator ( -A)-½ can also be defined, in terms of the semigroup, as 

11 fo~etAt½~; _ 

see [$2]. Therefore, by using the duality in L ~ ( ~ ) ,  the kernels associated in 

the sense of 2.11 with the operators Rj = 0x~(-A)-½, as defined above, can 

be computed. In fact, if f is a smooth compactly supported function, for all x 

outside the support of f we have 

1 / o ° °  1 f exp( IX - yl 2 l dt (3.1) Rjf(x) = Ox~-7-f~ -~ )I(y)dyt~ T F(E) (4~t) n/2 JR~ " 

2 r  (x_j r ,  "d 
- 

- -  n 1 IX _ y l n + ,  f r Y )  Y ,  
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where wn-1 = 21rn/2/F(~) is the surface area of the unit sphere in ll~ n. 

Before coming to the proof of Theorem B, we need some preliminary work to 

set the stage. Then we apply the ergodic Ap theory developed in section 2. We 

shall use some ideas in [DR], [AC] and [P]. 

Let k be a "bounded oscillation kernel" with corresponding operator K (see 

Definition 2.1t). We consider the unit sphere E~-I  of IR ~ endowed with the 

rotationally invariant measure da normalized so that f~_~ da = 1. Given a 

fixed y' • En-1 we consider the one parameter group of operators Ty, = {Or, }t, 

where 

(~,(/)(x) = f (x  + ty'), x • I~n,t • l~. 

Clearly I lOt (f)IIL.(R°) = I IfIIL,(R-). Therefore, if we define 

- = f k(s)OLSds, (3.2) //~:"Y' J{~<l~l<~'} 

then, by Theorem 2.12, we have 

(3.3) [I{K~+I,~,y'f}i~L;~÷I:~CJ~IIL~E(R-,w ) ~ Np(O(K),Ty, w)IIflIL~(R.,~) 

for all finite sets L C N and ~ C (ti+l,ti],  and every w • Ep("Fy,), where 

1 < p < c c .  

Let P be the projection of the space L 2(da) into the subspace 7 / o f  L 2(da) 

generated by the functions Yl , . . . ,  Y~n" 

LEMMA 3.4: With the notations in (3.2), we have 

n 

P(h~:,,.f(x))(y') = E K~:,I(x)Yj(y'), f • L ~, 
j = l  

where 

jr{ Z K;,.:(.)_ ! k(),)):k(-).-))::x_ 
Wn-1 zeR°:*<lzl<~'} Izl ~-x ' 

j = 1 , . . . , n  

~ d  { ~ } j ~ l  are the functions ~(~')  = , : /~y}  for y' • ~,~_~. 

Proof: 
we have 

As P is a projection and 1:1,. . . ,  Yn are orthonormal in L2(En_I, da), 

P(K,,e,,.f(x))(y') = E ej(x)Yj(y'), 



Vol. 141, 2004 DIMENSION FREE ESTIMATES 141 

where 

cj(x) = fE K~:,,y,f(x)Yj(y')da(y'). 
n--I 

By using polar coordinates and the fact that the Yj's are odd functions, we have 

that for f E L °~, 

cj(x) = rE,_1 f{tc~:~<ltl<~'} k(t)o~tf(x)dtYj(y')da(y') 

---- J~{teR:~<lt]<e'}/E,-1 k( t) f (x -ty')Yj(y')da(y')dt 

= fo~ r E . - ,  lc(t)x{teR::<ltl<~'}f(x - ty')Yj(y')da(y')dt 

= foCC(k(t) - k(-t))x{tee:~<t<e,}/En-1 f (x  - ty')Yj(y')dcr(y')dt 

= fo~(k(t) - k(-t))x{t~:~<t<c,}/E,,_~ f(t~--z-~Y')YJ(Y')tn-ld(r(Y')dt 

= 1 ~ (k( lz l ) -k(- lz[))  (~_~[)dz. 
,, izl _ 1 x { z  : c < Izl < s '} f (x  - z)Yj z 

THEOREM 3.5: Let k be a "bounded oscillation kernel" on ~ as in 2.11. Let 
1 < p < oc; assume that w is a weight in I~ n such that the function t --+ ~t,w(x) 
is a weight in Ap(~) with an Ap-eonstant independent of y' and x. Then there 
exists a constant C(w) such that 

(3.6) [hT,+,,e, fl a _< C(a;)llfllL.(R~,~,) 
--  / i E L ; s i + l , g i E ~ i  LPE(Rn,u)) 

for all finite sets L C N and ,7i C (ti+l,ti]. Moreover, the constant C can be 
taken to be an upper bound for the norm of operators of the form O(K): LP(~, v) 
-~ LP(II~,v), where v(t) = ~ ,w(x)  for some y~ and x. 

Proof." We observe that by using Theorem 2.10 it is enough to prove inequality 
(3.6) for some p, 1 < p < oc. We shall prove it for p = 2. In fact, by using 
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orthogonality and the representation formula for P in Lemma 3.4 we have 

{(~.~l 'KJe~+l 'e i f i '211/21 ] L~{R-,w) 
_ / iEL;~i+l,eiEJi 

j t 2 , 1/2 
= [ E g e , + l , ~ f Y j ( y  )[ da(y )) 

,~-1 j = l  / )iEL;ei+l,eiEJi 

= { ( ~ _ ~  ]P(Ke~+~'e'"f('))(Y)'2da(Y'))l/2}iEL;S,+l,e, E j  ~ L2E(R,%w) 

~-- { ( /E,_ 'Ke,+~,s,y' f ( ' ) )  ]2da(Y'))l/2 }iEL;e~+l,e~Ej ~ L~(R~,w) 

<_ ([[{K~+,,~,,y'l(')}ier;~,+,,~,es, [[L~(R,,~))2da(Y')) 
n - - 1  

< 

where in the penultimate inequality we have used (3.3). | 

COROLLARY 3.7: Let 1 < p < cc and let -1  < a < p - 1. Let k be a bounded 
oscillation kernel on ]~ as in 2.11 and consider the operators K~, e, defined in 
Lemma 3.4. Then there exists a constant Ca,B such that 

oo ?1 

~i+l ,¢i 
\ i=1 ti+l<e~+l<, i_  i k j = l  (3.s) 

< c.,p JRo If(x)lPlxl"dx' 
r 

for each sequence {ti}i such that ti > ti+l x O. 

Proof: In order to apply Theorem 3.5, it will be enough to show that,  given 

x E ~n and y' E En-1, the function t -+ Ix + ty'[ a is an Ap-weight on ~, 

with an Ap-constant independent of x and y'. Fix x E R'~,y ' E En-1 and 

decompose x as x = Xl +toy', with xl ±y'.  Then, as [yq = 1, we have [x + ty'[ = 
(]Xl] 2 + [to + t]2) 1/2 " [xl[ + [to + t[. Therefore [x + ty'l ~ ,,~ [Xl[ ~ + [to + t] ~. 

Hence if M is the Hardy-Littlewood maximal operator and we denote by ~s 

the translate function ~s(t) = ~(t - s), by using the translation properties of 

Lebesgue measure and the fact that  It] a is a Ap-weight, we have 

/R lM~(t)[p(lx, l~+lto + t[~)dt 
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= JfR ]M~(t)[P[xl]adt + JfR ]M~(t)lP]t° + tladt 

= ]xlla f~ ]M~(t)lVdt + JfR [M~t°(t)[v[t]adt 

< ]xlrCp ~ t~(t)]Vdt + Ap(]t] ~) 9/R ]~to(t)p't]~dt 

< (cp + Av(Itl"))fR I~(t)lP(Ixll~ + Ito + tl~)dt. 

It follows that Ix1] ~ + Ito + tl ~, and hence Ix + ty'] ~, is an Av-weight with an 

Ap-constant on l~ independent of x and y'. | 

Proof of Theorem B: We only give the proof in the case of the oscillation 

operator; we leave to the reader the details for the variation operator. 

Throughout this proof we shall denote by Aj the kernels of the operators 

Rj = c3xj(-A) -1/2. We consider the HAlbert transform on lR given by the 

kernel k(t) = t -1. Therefore, by using Lemma 3.4 we have 

Kj,~,f(x ) _ 2 n l / 2 /  1 f ' x  zj 
H ( - z)v( dz' 

and so K~,e,f(x) = -nnAj,~,~, * f(x), where nn = n'12r(~)r(½)12r(~21). 
StArling's formula gives Innl ,~ C and therefore the theorem follows from 

Corollary 3.7. | 
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